2 research outputs found

    GENTLE/A - Adaptive Robotic Assistance for Upper-Limb Rehabilitation

    Get PDF
    Advanced devices that can assist the therapists to offer rehabilitation are in high demand with the growing rehabilitation needs. The primary requirement from such rehabilitative devices is to reduce the therapist monitoring time. If the training device can autonomously adapt to the performance of the user, it can make the rehabilitation partly self-manageable. Therefore the main goal of our research is to investigate how to make a rehabilitation system more adaptable. The strategy we followed to augment the adaptability of the GENTLE/A robotic system was to (i) identify the parameters that inform about the contribution of the user/robot during a human-robot interaction session and (ii) use these parameters as performance indicators to adapt the system. Three main studies were conducted with healthy participants during the course of this PhD. The first study identified that the difference between the position coordinates recorded by the robot and the reference trajectory position coordinates indicated the leading/lagging status of the user with respect to the robot. Using the leadlag model we proposed two strategies to enhance the adaptability of the system. The first adaptability strategy tuned the performance time to suit the user’s requirements (second study). The second adaptability strategy tuned the task difficulty level based on the user’s leading or lagging status (third study). In summary the research undertaken during this PhD successfully enhanced the adaptability of the GENTLE/A system. The adaptability strategies evaluated were designed to suit various stages of recovery. Apart from potential use for remote assessment of patients, the work presented in this thesis is applicable in many areas of human-robot interaction research where a robot and human are involved in physical interaction

    Prevalence of haptic feedback in robot-mediated surgery : a systematic review of literature

    Get PDF
    © 2017 Springer-Verlag. This is a post-peer-review, pre-copyedit version of an article published in Journal of Robotic Surgery. The final authenticated version is available online at: https://doi.org/10.1007/s11701-017-0763-4With the successful uptake and inclusion of robotic systems in minimally invasive surgery and with the increasing application of robotic surgery (RS) in numerous surgical specialities worldwide, there is now a need to develop and enhance the technology further. One such improvement is the implementation and amalgamation of haptic feedback technology into RS which will permit the operating surgeon on the console to receive haptic information on the type of tissue being operated on. The main advantage of using this is to allow the operating surgeon to feel and control the amount of force applied to different tissues during surgery thus minimising the risk of tissue damage due to both the direct and indirect effects of excessive tissue force or tension being applied during RS. We performed a two-rater systematic review to identify the latest developments and potential avenues of improving technology in the application and implementation of haptic feedback technology to the operating surgeon on the console during RS. This review provides a summary of technological enhancements in RS, considering different stages of work, from proof of concept to cadaver tissue testing, surgery in animals, and finally real implementation in surgical practice. We identify that at the time of this review, while there is a unanimous agreement regarding need for haptic and tactile feedback, there are no solutions or products available that address this need. There is a scope and need for new developments in haptic augmentation for robot-mediated surgery with the aim of improving patient care and robotic surgical technology further.Peer reviewe
    corecore